Inkjet printed antibiotic- and calcium-eluting bioresorbable nanocomposite micropatterns for orthopedic implants.

نویسندگان

  • Yexin Gu
  • Xuening Chen
  • Joung-Hyun Lee
  • David A Monteiro
  • Hongjun Wang
  • Woo Y Lee
چکیده

Inkjet printing of antibiotic- and calcium-eluting micropatterns was explored as a novel means of preventing the formation of biofilm colonies and facilitating osteogenic cell development on orthopedic implant surfaces. The micropatterns consisted of a periodic array of ∼50 μm circular dots separated by ∼150 μm. The composition of the micropatterns was controlled by formulating inks with rifampicin (RFP) and poly(D,L-lactic-co-glycolic) acid (PLGA) dissolved in an organic solvent with ∼100 nm biphasic calcium phosphate (BCP) nanoparticles suspended in the solution. During printing RFP and PLGA co-precipitated to form a nanocomposite structure with ∼10-100 nm RFP and the BCP particles dispersed in the PLGA matrix. The rate of RFP release was strongly influenced by the RFP loading in the micropattern, particularly on the first day. The RFP-containing micropatterns effectively prevented the formation of Staphylococcus epidermidis biofilm colonies due to their ability to kill bacteria prior to forming colonies on the patterned surfaces. The BCP-containing micropatterns printed on the surface of the alloy TiAl6V4 significantly accelerated osteoblast cell differentiation, as measured by alkaline phosphatase expression and calcium deposition, without compromising cell proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water Fast of Inkjet Print by Using Acrylic /Nano-Silver Ink

A colour ink jet printing with improved water fastness property was produced by using of special component in the ink’s formulation. In this study, the water fastness of ink jet prints which used acrylic/nano-silver resin nano-composite ink instead of conventional resin in ink’s formulation was examined. The nano composite resin was prepared via miniemulsion polymerization of acrylate monomers ...

متن کامل

Multiscale patterning of nanocomposite polyelectrolyte/nanoparticle films using inkjet printing and AFM scratching

The fabrication of structured polymer/nanoparticle composite films through a combination of additive, subtractive and self-assemblymethodologies is investigated. Consumer grade inkjet printing hardware is employed to deposit cationic polyelectrolytes on (i) hydrophilic and (ii) hydrophobised glass substrates. The hydrophobisation process controls the spreading of the droplets and hence the late...

متن کامل

A Fully Functional Drug-Eluting Joint Implant

Despite advances in orthopedic materials, the development of drug-eluting bone and joint implants that can sustain the delivery of the drug and maintain the necessary mechanical strength in order to withstand loading has remained elusive. Here, we demonstrate that modifying the eccentricity of drug clusters and the percolation threshold in ultrahigh molecular weight polyethylene (UHMWPE) result...

متن کامل

Inkjet-printed multicolor arrays of highly luminescent nanocrystal-based nanocomposites.

Inkjet technology is a compelling method for the flexible and cost-effective printing of functional inks. We show that nanocomposite solutions based on polystyrene and differently sized core/shell-type nanocrystals (NCs) formed by a CdSe core coated with a shell of ZnS (CdSe@ZnS) in a single solvent, chloroform, can be reliably dispensed into luminescent, multicolor pixel arrays. This study dem...

متن کامل

Performing a Calcium-Phosphate Layer on Porous NiTi Alloy for Using in Orthopedic Applications

Porous NiTi alloys has a series of unique properties such as shape memory effect, superelastic behavior and energy absorbability that make them usable in a wide range of medical and industrial appliances. But the more probability of Ni release from a porous NiTi compare to the nonporous one has restricted it’s uses in implants. In the present research for resolving the problem, performing a cal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2012